State-of-the-Art: DTM Generation Using Airborne LIDAR Data

نویسندگان

  • Zi-Yue Chen
  • Bingbo Gao
  • Bernard Devereux
چکیده

Digital terrain model (DTM) generation is the fundamental application of airborne Lidar data. In past decades, a large body of studies has been conducted to present and experiment a variety of DTM generation methods. Although great progress has been made, DTM generation, especially DTM generation in specific terrain situations, remains challenging. This research introduces the general principles of DTM generation and reviews diverse mainstream DTM generation methods. In accordance with the filtering strategy, these methods are classified into six categories: surface-based adjustment; morphology-based filtering, triangulated irregular network (TIN)-based refinement, segmentation and classification, statistical analysis and multi-scale comparison. Typical methods for each category are briefly introduced and the merits and limitations of each category are discussed accordingly. Despite different categories of filtering strategies, these DTM generation methods present similar difficulties when implemented in sharply changing terrain, areas with dense non-ground features and complicated landscapes. This paper suggests that the fusion of multi-sources and integration of different methods can be effective ways for improving the performance of DTM generation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Slope Filtering of Airborne LiDAR Data in Urban Areas for Digital Terrain Model (DTM) Generation

A filtering algorithm is proposed that accurately extracts ground data from airborne light detection and ranging (LiDAR) measurements and generates an estimated digital terrain model (DTM). The proposed algorithm utilizes planar surface features and connectivity with locally lowest points to improve the extraction of ground points (GPs). A slope parameter used in the proposed algorithm is updat...

متن کامل

Digital Terrain Model on Vegetated Areas: Joint Use of Airborne Lidar Data and Optical Images

Airborne Lidar system provides the Earth’s topography as 3D point clouds. Many algorithms have been implemented to sort out the automatic classification problem as well as the Digital Terrain Model generation (DTM). This is mainly due to the various aspects of landscapes within a global survey which can include urban, forested or mountainous areas. This paper is focused on the generation of DTM...

متن کامل

Water-Land-Classification in Coastal Areas with Full Waveform Lidar Data

flat, a high accuracy of the DTM is required for tasks such as hydrographic modelling. Airborne lidar (light detection and ranging) has become a standard method for DTM generation in coastal zones. The lidar technique has two main advantages compared to traditional aerial photogrammetry: Firstly, the active laser technique works independently from illumination from the sun, which allows mapping...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

A Comparative Study of Curvature and Grid Data Reduction Algorithms for Lidar-derived Digital Terrain Models

Abstract A digital terrain model (DTM) is defined as the digital cartographic representation of the elevation of the earth's surface created from discrete elevation points. DTMs have been applied to a diverse field of tasks, such as forest management, urban planning, ice sheet mapping, flood control, road design, hydraulic simulation, visibility analysis of the terrain, and topographic change q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017